
Quantifying Variability and Persistence in Remotely 
Sensed Chlorophyll Time Series Data 

Robert M. Suryan  
 

Jarrod A. Santora  

William J. Sydeman 

  
 



Background: 
 

 Satellite remote sensing has provided unprecedented insight into global 
patterns of primary production 

 
 Yet its utility to understand and predict the distribution of mid- to upper 
trophic-level predators remains equivocal 
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Problems: 
 

 Extrapolating  to secondary or tertiary productivity often provides mixed 
results (Worm et al. 2005 Science; Suryan et al. 2006 DSRII; Gremillet et al. 
2008 JAE, and MANY OTHERS) 

 

Nur et al. 2011 Ecol Appl. Where the wild things are:  Predicting 
hotspots of seabird aggregations in the California Current System 
“Overall, bathymetric variables were often important predictive 
variables, whereas oceanographic variables derived from remotely 
sensed data were generally less important.” 

1. Does not reflect chlorophyll maximum 

2. Advection of surface waters 

3. Variation in grazing rates 

4. Time lags in the response of consumers to primary production 

5. Predators do not consume phytoplankton directly 
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Possible Solutions? 
 

 Change scale (temporal or spatial) of remote sensing data.   
 

 Measure “persistence.”  Investigators note the importance of persistence  
(e.g., Palacios et al. 2006 DSR II, Sigler et al. 2012 DSR II). 
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 Identify areas of elevated productivity 
that reflect enhanced trophic transfer and 
food web development and are persistent 
in space and time  

 
 Derive a spatially and temporally 
explicit chl a variability and persistence 
metric to expand the use of chl a data in 
predicting areas of elevated consumer 
abundance – i.e., enhanced trophic 
transfer of energy 

 
 Test whether it is a better predictor of 
marine consumer distribution than more 
typically used mean chl a 

Not all areas of high chl a concentration are equally productive 
from a food web perspective 

Objectives: 
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 9 yrs (1998-2006) of Level 3 
SeaWiFS data for the California 
Current System (CCS) 

 
 

 9x9 km (n=29,504 pixels) , monthly  
(n=108 months per pixel) resolution 

Rintoul et al. 2006 

Methods  – Remote Sensing Data 
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 3 step process 

Х – μ 
σ 

μ = 0 and σ = 1 

1. Log transform and standardize 
data in each pixel using a z-score 

Methods  – Remote Sensing Data 
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1. Log transform and standardize 
data in each pixel using a z-score 
 

2.  Spatial mean among pixels for 
each month, then create an CCS-
scale model including seasonal 
cycles (6 and 12 month) and 
linear trend 

chl a = β0 + β1sin(2πf1t) + β2cos(2πf1t) + β3sin(2πf2t) + β4cos(2πf2t) + β5t 
 

* R2 = 0.45, F = 16.614, P < 0.001 * 

 3 step process 

Methods  – Remote Sensing Data 
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1. Log transform and standardize 
data in each pixel using a z-
score 
 

2.  Spatial mean among pixels for 
each month, then create an 
CCS-scale model including 
seasonal cycle and linear trend 
 

3.  Calculated the proportion of 
months (from Step 1) each 
pixel had a positive anomaly of 
> 1 SD above the CCS-wide 
model (from Step 2) 

 3 step process 

Methods  – Remote Sensing Data 
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Frequency of Chlorophyll Peaks Index 
(FCPI) 

Spatially Explicit Integration of 
“Variability” and “Anomaly Persistence” 
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 Mean climatology – 1 step process: 

Methods  – Data Processing 

1. Arithmetic mean for each 
pixel    
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 Strip transects conducted 1996-2006 
during May-June off Central CA and 
March-April and July-August off 
Southern CA 

 

 Calculated total bird density per 0.9 
km2 bins 

 

 Interpolated bird density as percent 
utilization distributions 

 

 Seabird density chiefly reflects the 
abundance of four species: common 
murre, Cassin’s auklet, sooty 
shearwater, and phalaropes 

Photo: Troy Guy 

Methods  – Seabird Surveys 
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Results 
 

  GAM of bathymetry vs. chl a and FCPI  
 
chl a (or FCPI) ~ s(depth) + s(slope) + te(latitude, longitude)  

 

chl a FCPI 
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Results 
 

  GAM of chl a vs. FCPI  
        FCPI ~ s(chl a)  
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Results 
 

  Chl a all months for Central CCS and bird density polygons  
 

  R² = 0.48 between mean chl a and seabird densities  
      (Bootstrap and Monte Carlo analyses, 5000  repetitions)  
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Results 
 

  FCPI for Central CCS and bird density polygons  
 

 R² = 0.90 between FCPI and seabird densities  
    (Bootstrap and Monte Carlo analyses, 5000  repetitions)  

 

FCPI (%) 
FCPI (%) 
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Results 
Bird Density vs. Chl a mean and FCPI 

Southern CA - Spring 
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Results 
Seasonal Variability in FCPI 
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Results 
Annual Variability in FCPI 
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Conclusions: 
 

 Satellite-derived FCPI is an equal or better 
predictor of predator distribution than chl a 
mean concentration for offshore species 
 
 FCPI appears to identify areas of enrichment, 
retention, aggregation (e.g., Bakun 1996) – 
regions of enhanced food web productivity and 
energy transfer to upper trophic levels 

 
 FCPI metric highlighted some known hotspots 
in the CSS that were indistinguishable from 
background levels using mean chl a  

 
 Potential widespread application for 
identifying important pelagic habitats and 
linking remotely-sensed chl a to consumer 
distribution and in marine spatial planning 
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