Quantifying Variability and Persistence in Remotely Sensed Chlorophyll Time Series Data

Robert M. Suryan

Jarrod A. Santora William J. Sydeman

Background:

- > Satellite remote sensing has provided unprecedented insight into global patterns of primary production
- > Yet its utility to understand and predict the distribution of mid- to upper trophic-level predators remains equivocal

Problems:

- ➤ Extrapolating to secondary or tertiary productivity often provides mixed results (Worm et al. 2005 Science; Suryan et al. 2006 DSRII; Gremillet et al. 2008 JAE, and MANY OTHERS)
- 1. Does not reflect chlorophyll maximum
- 2. Advection of surface waters
- 3. Variation in grazing rates
- 4. Time lags in the response of consumers to primary production
- 5. Predators do not consume phytoplankton directly

Nur et al. 2011 Ecol Appl. Where the wild things are: Predicting hotspots of seabird aggregations in the California Current System "Overall, bathymetric variables were often important predictive variables, whereas oceanographic variables derived from remotely sensed data were generally less important."

Possible Solutions?

- > Change scale (temporal or spatial) of remote sensing data.
- ➤ Measure "persistence." Investigators note the importance of persistence (e.g., Palacios et al. 2006 DSR II, Sigler et al. 2012 DSR II).

Not all areas of high chl a concentration are equally productive from a food web perspective

Objectives:

- ➤ Identify areas of elevated productivity that reflect enhanced trophic transfer and food web development and are persistent in space and time
- ➤ Derive a spatially and temporally explicit chl a variability and persistence metric to expand the use of chl a data in predicting areas of elevated consumer abundance i.e., enhanced trophic transfer of energy
- Test whether it is a better predictor of marine consumer distribution than more typically used mean chl *a*

➤ 9 yrs (1998-2006) of Level 3 SeaWiFS data for the California Current System (CCS)

> 9x9 km (n=29,504 pixels), monthly (n=108 months per pixel) resolution

- > 3 step process
- 1. Log transform and standardize data in each pixel using a z-score

$$\frac{X-\mu}{\sigma}$$

$$\mu$$
 = 0 and σ = 1

- > 3 step process
- 1. Log transform and standardize data in each pixel using a z-score
- 2. Spatial mean among pixels for each month, then create an CCS-scale model including seasonal cycles (6 and 12 month) and linear trend

chl
$$a = \beta_0 + \beta_1 \sin(2\pi f_1 t) + \beta_2 \cos(2\pi f_1 t) + \beta_3 \sin(2\pi f_2 t) + \beta_4 \cos(2\pi f_2 t) + \beta_5 t$$

- ➤ 3 step process
- 1. Log transform and standardize data in each pixel using a z-score
- 2. Spatial mean among pixels for each month, then create an CCS-scale model including seasonal cycles (6 and 12 month) and linear trend

chl
$$a = \beta_0 + \beta_1 \sin(2\pi f_1 t) + \beta_2 \cos(2\pi f_1 t) + \beta_3 \sin(2\pi f_2 t) + \beta_4 \cos(2\pi f_2 t) + \beta_5 t$$

*
$$R^2 = 0.45$$
, $F = 16.614$, $P < 0.001$ *

- > 3 step process
- 1. Log transform and standardize data in each pixel using a z-score
- 2. Spatial mean among pixels for each month, then create an CCS-scale model including seasonal cycle and linear trend
- Calculated the proportion of months (from Step 1) each pixel had a positive anomaly of
 1 SD above the CCS-wide model (from Step 2)

Frequency of Chlorophyll Peaks Index (FCPI)

Spatially Explicit Integration of "Variability" and "Anomaly Persistence"

Methods – Data Processing

- **➤** Mean climatology 1 step process:
- 1. Arithmetic mean for each pixel

Methods – Seabird Surveys

- ➤ Strip transects conducted 1996-2006 during May-June off Central CA and March-April and July-August off Southern CA
- ➤ Calculated total bird density per 0.9 km² bins
- ➤ Interpolated bird density as percent utilization distributions
- ➤ Seabird density chiefly reflects the abundance of four species: common murre, Cassin's auklet, sooty shearwater, and phalaropes

> GAM of bathymetry vs. chl a and FCPI

chl a (or FCPI) $\sim s$ (depth) + s(slope) + te(latitude, longitude)

> GAM of chl a vs. FCPI FCPI ~ s(chl a)

- > Chl a all months for Central CCS and bird density polygons
- $ightharpoonup R^2 = 0.48$ between mean chl a and seabird densities

(Bootstrap and Monte Carlo analyses, 5000 repetitions)

- > FCPI for Central CCS and bird density polygons
- $ightharpoonup R^2 = 0.90$ between FCPI and seabird densities

(Bootstrap and Monte Carlo analyses, 5000 repetitions)

Results Bird Density vs. Chl a mean and FCPI Southern CA - Spring

Results Seasonal Variability in FCPI

Results Annual Variability in FCPI

Conclusions:

- ➤ Satellite-derived FCPI is an equal or better predictor of predator distribution than chl a mean concentration for offshore species
- ➤ FCPI appears to identify areas of enrichment, retention, aggregation (e.g., Bakun 1996) regions of enhanced food web productivity and energy transfer to upper trophic levels
- > FCPI metric highlighted some known hotspots in the CSS that were indistinguishable from background levels using mean chl a
- ➤ Potential widespread application for identifying important pelagic habitats and linking remotely-sensed chl a to consumer distribution and in marine spatial planning

Acknowledgements:

Packard Foundation

NASA Jet Propulsion Laboratory

NOAA Fisheries

PRBO Conservation Science

Yamashina Institute for Ornithology

U.S. Fish and Wildlife Service

North Pacific Research Board

National Science Foundation

